Guide to noise and air quality modelling

1. Executive Summary

We have asked independent consultants to carry out an assessment of the impact of the scheme proposals on air quality and traffic noise across the wider Oxford Street district. The assessment considers the change of key air pollutants nitrogen dioxide (NO₂), particulate matter PM₂.₅ and PM₁₀, and carbon dioxide (CO₂) and road traffic noise at selected sensitive locations. Both the noise and air quality modelling use traffic speed and flow data from the Operational Network Evaluation (ONE) traffic model. Extensive monitoring is taking place to support the air and noise modelling.

According to the assessment:

Air quality

- There will be considerable improvement in air quality between the current and future situation in 2021 without the scheme. The predicted reductions are due to tighter vehicle legislation and local improvements in vehicle emissions due to the Mayor’s policies such as the Ultra Low Emission Zone which will come into force into 2019.
- With the Oxford Street scheme in place there will be further benefits in air quality at the majority of sites modelled: There are 41 sites with benefits (7 large, 6 medium and 28 low to very low), and 29 sites (2 medium, 27 low to very low) with adverse impacts.
- At the sites with adverse impact, the predicted annual average NO₂ concentrations will still be lower than the current situation.
- The largest reductions in annual mean NO₂ concentration are found at locations along Oxford Street due to the removal of traffic on Oxford Street West. A maximum reduction of 13 µg/m³ is found on Oxford Street by West London College. The greatest increase of 3 µg/m³ is seen on Upper Brook Street.
- With the Oxford Street scheme in place on average across all selected locations, there is a predicted reduction of 1 µg/m³ in annual average NO₂ concentrations.
- The change in PM₁₀ and PM₂.₅ concentrations due to the scheme is small at all selected locations.
- Total traffic related annual CO₂ emissions from all modelled results are predicted to be lower by 3 percent in the future situation with the Oxford Street proposals.
Road Traffic Noise

- Among the 78 modelled receptors there are 22 locations which experience a reduction in noise (7 large, 3 medium and 12 small), 13 that see a small increase and the remaining locations experience no or an imperceptible change.
- There are 7 large decreases in noise; these are primarily due to a reduction in traffic along Oxford Street itself as a result of the scheme, although there are also large benefits on James Street and on Wigmore Street, near Cavendish Square Gardens.

2. Introduction

A key objective for the transformation of Oxford Street and the surrounding area is to improve the environment, to address poor air quality and deliver improved neighbourhoods for residents and support the West End’s economy.

The Oxford Street proposals will mean that traffic patterns in the area change, which in turn could bring localised environmental changes. To provide a detailed understanding of the changes in road traffic-related air quality and noise levels in the area, we have asked independent consultants to carry out an impact assessment of the scheme proposals on air quality and traffic noise across the area.

The assessment considers the change in concentration of key air pollutants NO₂, particulate matter PM₁₀ and PM₂.₅, and emissions CO₂) and road traffic noise at selected sensitive receptor locations such as houses, schools, community buildings and hospitals. Appendix 1 provides the location of each receptor, which are all situated close to roads most affected by the scheme.

This note provides a high level summary of the findings from the air and noise modelling. An independent a technical document which can be found here provides a more detailed background and analysis of the assessment.

3. Air pollution

NO₂ and particulate matter (PM₁₀ and PM₂.₅) are the two pollutants causing greatest concern to health in the capital and as such are the focus of this assessment. Exhaust emissions from road vehicles, traffic flow rates, composition and speed all affect the concentration levels of these pollutants.

NO₂, PM₁₀ and PM₂.₅ are measured in microgrammes of pollutant per cubic metre of air (μg/m³). The Air Quality Standards Regulations 2010 set legal limits (called ‘limit values’) for concentrations of pollutants in outdoor air.
In addition to local air quality pollutants, vehicle emissions also generate CO\(_2\) which is a principal greenhouse gas related to climate change and has been assessed in the modelling.

4. Road Traffic Noise

Noise from a flow of road traffic is generated by both vehicles' engines and the interaction of tyres with the road surface. A number of factors can influence the level of road traffic noise including traffic flow, speed, composition (percentage heavy duty vehicles), gradient, type of road surface, distance from the road and the presence of any obstructions blocking the road.

Road traffic noise is measured in decibels (dB); a change in noise level of more than 3 dB at a sensitive receptor is usually considered significant as it may be noticeable.

5. Air and Noise Quality Modelling Methodology

Both the noise and air quality modelling are based on traffic speed and flow data from the Operational Network Evaluation (ONE) model, which is a traffic reassignment model used to understand traffic flow changes on London’s road network. The data from the ONE model is fed into the respective air and noise models.

To enable an understanding of the impact of the Oxford Street proposals air and noise modelling has been carried out for the following three scenarios:

- **Baseline Situation**: The current arrangement for Oxford Street and Central London

- **Future Situation without Oxford Street Proposals**: The current arrangement for Oxford Street but with other committed developments and other road improvements planned for implementation up to 2021.

- **Future Situation with Oxford Street Proposals**: The Oxford Street proposals and other committed developments and road improvements planned for implementation up to 2021
6. Air quality modelling results

Baseline Situation
Key findings from baseline situation air modelling are:

- 2016 concentrations of annual average nitrogen dioxide (NO$_2$) concentrations are above the air quality limit value of 40 µg/m3 at all receptor locations;
- 2016 concentrations of hourly average NO$_2$ are below the limit value at all receptor locations.
- 2016 concentrations of particulate (PM$_{10}$ and PM$_{2.5}$) are below relevant limit values at all selected locations.
- The total CO$_2$ emissions in 2016 from all modelled roads in the study area are 43,600 tonnes.

Figure 1 below presents the annual mean NO$_2$ concentration for the baseline situation.
Annual Mean NO₂ Concentration [µg/m³]

- < 40 (Objective Value)
- 40 - 44
- 44 - 48
- 48 - 52
- 52 - 56
- 56 - 60
- 60 - 64
- > 64

2016 EXISTING ANNUAL MEAN NO₂ CONCENTRATIONS AT SELECTED POTENTIALLY SENSITIVE RECEPTORS

Client: TRANSPORT FOR LONDON

Purpose of Issue: FINAL

Scale: 1:10,000

This document has been prepared pursuant to and subject to the terms of AECOM's agreement with its client. AECOM accepts no liability for any use of this document other than its original client or its approved uses pursuant to AECOM's agreement with its client.
Future situation without Oxford Street Proposals
Figure 2 presents the annual mean NO$_2$ concentration in a future situation without the Oxford Street proposals. NO$_2$ concentrations decrease from the baseline situation to the future situation without the Oxford Street proposals at all locations except at a location on Brook Street (receptor 8), this is due to specific recent changes in the road layout here that are not reflected in the baseline situation.

The predicted reductions are due to tighter vehicle legislation and local improvements in vehicle emissions due to the Mayor’s policies such as the Ultra Low Emission Zone, driving improvements in both bus standards, taxis and the rest of the “fleet”, wider improvements in vehicle technology, and other road improvement schemes in the area. There are also small predicted reductions in hourly average NO$_2$ concentrations in locations relevant to the limit value in and around Oxford Street and Wigmore Street.

Despite improvements to vehicle emissions, these reductions are not sufficient to meet the annual average NO$_2$ concentration limit values; this is because the background annual average NO$_2$ concentrations in the area remain high.

With regards to particulates, predicted PM$_{10}$ and PM$_{2.5}$ concentrations are lower than in baseline situation and remain well below the relevant limit values at all 78 receptor locations.

Continued improvements to vehicle technology and fuel consumption mean that future situation total CO$_2$ emissions from all modelled roads are predicted to be 38,073 tonnes per year, which is a reduction of 12 percent from the baseline situation.
Annual Mean NO₂ Concentration [µg/m³]

- < 40 (Objective Value)
- 40 - 44
- 44 - 48
- 48 - 52
- 52 - 56
- 56 - 60
- 60 - 64
- > 64

TRANSPORT FOR LONDON

Scott House
Renskin Link, Basingstoke
Hampshire, RG21 7PP
Telephone (01256) 310200
Fax (01256) 310201
www.aecom.com

©Crown copyright and database rights 2017 Ordnance Survey 100035971 / 0453

This document has been prepared pursuant to and subject to the terms of AECOM's appointment by its client. Acceptance of this document by the use of its title, logo, or any other than its original client-client confidentiality terms, expressly waives any rights to such use, and only for the purposes for which the original confidentiality terms were waived.
Future situation with Oxford Street proposals
Figure 3 below presents the annual average NO\textsubscript{2} concentration levels for future situation with Oxford Street proposals.

The change in predicted annual average NO\textsubscript{2} concentrations due to the scheme varies depending on the area, but on average across all selected locations, there is a reduction in concentration by 1 µg/m3.

The largest reductions in annual mean NO\textsubscript{2} concentration are found at locations along Oxford Street due to the removal of traffic on Oxford Street West. A maximum reduction of 13 µg/m3 is found at R66 (West London College) on Oxford Street. There are also medium or large reductions at residential receptor locations in Wigmore Street (R72), Duke Street (R17, R76), Cavendish Square Gardens (R18), Brook Street (R8), Davies Street (R77) and Grosvenor Square (R36).

There are increases in predicted annual average NO\textsubscript{2} concentrations in other areas including at selected locations on Bruton Street (R7), Wimpole Street (R25), Maddox Street (R44), Park Lane (R45), Great Marlborough Street (R28) and Margaret Street (R34 and R53) and Dunraven Street (R58). The greatest increase of 3 µg/m3 is seen on Upper Brook Street (R49).

There are negligible changes to annual average NO\textsubscript{2} concentrations at a smaller number of locations including Harley Street (R1), Connaught Place (R23), George Street (R43), Marylebone Lane (R61) and Welbeck Street (R69).
Annual Mean NO₂ Concentration [µg/m³]

- < 40 (Objective Limit)
- 40 - 44
- 44 - 48
- 48 - 52
- 52 - 56
- 56 - 60
- 60 - 64
- > 64

© Crown copyright and database rights 2017 Ordnance Survey 100035971 / 0453

Scott House
Renmin Link, Basingstoke
Hampshire, RG21 7PP
Telephone (01256) 310200
Fax (01256) 310201
www.aecom.com

AECOM

Purpose of Issue
THIS DOCUMENT HAS BEEN PREPARED PURSUANT TO AND SUBJECT TO THE TERMS OF AECOM'S APPOINTMENT BY ITS CLIENT. AECOM ACCEPTS NO LIABILITY FOR ANY USE OF THIS DOCUMENT OTHER THAN ITS ORIGINAL CLIENT OR FOLLOWING AECOM'S EXPRESS AGREEMENT TO SUCH USE, AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED.
The change in PM\textsubscript{10} and PM\textsubscript{2.5} concentrations due to the scheme is small at all selected locations. The reason for the minimal change is because concentration of particulate matter in Central London is dominated by other background sources.

Total traffic related annual carbon dioxide (CO\textsubscript{2}) emissions from all modelled results are predicted to be lower by 3 percent in the future situation with the Oxford Street proposals compared to future situation without the scheme, this is due to a small overall reduction in traffic flow in the study area.

Figure 4 presents the level of change in annual mean concentration of NO\textsubscript{2} between the future situation with and without the Oxford Street proposal. The plan highlights that at the selected locations, there are more beneficial air quality impacts than negative impacts. Table 1 below provides a further breakdown of the level of change; overall there are 41 sites which experience beneficial impact and 29 sites with adverse impacts.

Table 1: Level of change in annual mean concentration of NO\textsubscript{2} between the future situation with and without the Oxford Street proposal

<table>
<thead>
<tr>
<th>Level of change</th>
<th>Number of sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large beneficial change</td>
<td>7</td>
</tr>
<tr>
<td>Medium beneficial change</td>
<td>6</td>
</tr>
<tr>
<td>Low to very low beneficial change</td>
<td>28</td>
</tr>
<tr>
<td>Imperceptible change</td>
<td>8</td>
</tr>
<tr>
<td>Low to very low adverse change</td>
<td>27</td>
</tr>
<tr>
<td>Medium adverse change</td>
<td>2</td>
</tr>
<tr>
<td>Large adverse change</td>
<td>0</td>
</tr>
</tbody>
</table>
Changes in Annual Mean NO₂ Concentration [µg/m³]

- < -4 Large
- -4 to -2.2 Medium
- -2.2 to -0.2 Very Low to Low
- -0.2 to +0.2 Imperceptible
- +0.2 to +2.2 Very Low to Low
- +2.2 to +4 Medium
- > +4 Large

Client: TRANSPORT FOR LONDON

Purpose of Issue: THIS DOCUMENT HAS BEEN PREPARED PURSUANT TO AND SUBJECT TO THE TERMS OF AECOM'S APPOINTMENT BY ITS CLIENT. AECOM ACCEPTS NO LIABILITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS ORIGINAL CLIENT OR FOLLOWING AECOM'S EXPRESS AGREEMENT TO SUCH USE AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED.

Transport for London
Scott House
2001-2007
Telephone (0239) 420-000
Fax (0239) 420-020
www.aecom.com

Project Title/Drawing Title: CHANGES IN AIR QUALITY BETWEEN FUTURE BASE WITHOUT OXFORD STREET SCHEME AND FUTURE WITH OXFORD STREET SCHEME AT SELECTED POTENTIALLY SENSITIVE RECEPTORS

Drawing Number: FIGURE 4
7. Road traffic noise modelling results

Figure 5 presents the noise level in the future situation without the Oxford Street proposals. Predicted road traffic noise levels are generally 65 to 75 dB(A) which is typical for central London locations. Noise levels are greatest on the main roads in the area such as Oxford Street (without the scheme), Regent Street, Piccadilly and Park Lane.

Figure 6 presents the future situation road traffic noise levels with the Oxford Street proposals and Figure 7 presents the level of change compared to the future situation without the scheme.
Project Title/Drawing Title
FUTURE BASE WITHOUT OXFORD STREET SCHEME NOISE LEVEL AT SELECTED POTENTIALLY SENSITIVE RECEPTORS

Purpose of Issue
THIS DOCUMENT HAS BEEN PREPARED PURSUANT TO AND SUBJECT TO THE TERMS OF AECOM'S APPOINTMENT BY ITS CLIENT. AECOM ACCEPTS NO LIABILITY FOR ANY USE OF THIS DOCUMENT OTHER THAN BY ITS ORIGINAL CLIENT OR FOLLOWING AECOM'S EXPRESS AGREEMENT TO SUCH USE AND ONLY FOR THE PURPOSES FOR WHICH IT WAS PREPARED AND PROVIDED.

Client
TRANSPORT FOR LONDON

Drawn
JCM

Checked
MM

Approved
GC

Date
03/11/2017

Scale @ A4
1:10,000

Purpose of Issue
FINAL

Rev
01

File Name:C:\Users\jessica.muirhead\Documents\Oxford St West\GIS\Figures\02-11-17\OSW_FIG8_171103_v2.mxd

LA10, 18h dB

<= 50
50 - 55
55 - 60
60 - 65
65 - 70
70 - 75
> 75

©Crown copyright and database rights 2017 Ordnance Survey 100035971 / 0453

Meters

TRANSPORT FOR LONDON

Scott House
Remain Link, Basingstoke
Hampshire, RG21 7PP
Telephone (01256) 310200
Fax (01256) 310201
www.aecom.com
FUTURE WITH OXFORD STREET
SCHEME NOISE LEVEL
AT SELECTED POTENTIALLY
SENSITIVE RECEPTORS

L\textsubscript{A10}, 18h dB

- <= 50
- 50 - 55
- 55 - 60
- 60 - 65
- 65 - 70
- 70 - 75
- > 75
CHANGES IN NOISE BETWEEN FUTURE BASE WITHOUT OXFORD STREET SCHEME AND FUTURE WITH OXFORD STREET SCHEME AT SELECTED POTENTIALLY SENSITIVE RECEPTORS

L_A10, 18h dB

- <= -5.0 Large
- -4.9 to -3.0 Medium
- -2.9 to -1.0 Small
- -0.9 to -0.1 Imperceptible
- -0.1 to 0.1 No Change
- 0.1 to 0.9 Imperceptible
- 1.0 to 2.9 Small
- 3.0 to 4.9 Medium
Among the 78 modelled receptors there are 22 locations which experience a reduction in road traffic noise and 13 that see a small increase. Table 2 provides a further breakdown of the scheme impacts on road traffic noise.

Table 2: Level of change in road traffic noise between the future situation with and without the Oxford Street proposal

<table>
<thead>
<tr>
<th>Level of change</th>
<th>Number of sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large beneficial change</td>
<td>7</td>
</tr>
<tr>
<td>Medium beneficial change</td>
<td>3</td>
</tr>
<tr>
<td>Small beneficial change</td>
<td>12</td>
</tr>
<tr>
<td>Imperceptible / No change</td>
<td>42</td>
</tr>
<tr>
<td>Small adverse change</td>
<td>13</td>
</tr>
<tr>
<td>Medium adverse change</td>
<td>0</td>
</tr>
<tr>
<td>Large adverse change</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 7 large decreases in noise; these are primarily due to a reduction in traffic along Oxford Street itself as a result of the scheme, although there are also significant benefits on James Street (R30) and on Wigmore Street to the north of Cavendish Square Gardens (R18).

There are no medium or large adverse effects on road traffic noise from the scheme. There are some small increases in road traffic noise at selected locations including Upper Brook Street (R49), Margaret Street (R53) and Duke Street (R37).

Night-time road traffic noise calculations were performed for two locations along Wigmore Street (1. between Portman Square and Duke Street & 2. Outside Wigmore Hall) to identify potential noise effects due to rerouting of night buses on Wigmore Street which is a key part of the Oxford Street proposals.

Results indicate a negligible increase in road traffic noise at the first location, between Portman Square and Duke Street, and a negligible decrease in road traffic noise at the second location, outside Wigmore Hall.

8. Monitoring strategy

Should we decide to proceed with the Oxford Street proposals, we will be undertaking comprehensive air and noise monitoring throughout the Oxford Street West district both before and after the implementation of our proposals. If there were
to be locations that experience a considerable increase in air pollution or noise levels as a result of the scheme then mitigation measure will be developed.

To ensure we have a robust and detailed data set, we have already commenced monitoring of existing NO$_2$ levels through the implementation of diffusion tubes. Figure 8 presents the location of diffusion tubes for Oxford Street West and Oxford Street East and several neighbouring schemes in the area including the Baker Street two-way project.

Figure 8 – Diffusion tube network monitoring NO$_2$

In addition to NO$_2$ monitoring we have carried out attended noise monitoring at 10 sites through the study area in October 2017 to understand current road traffic noise levels. Outputs from the pre-scheme air and noise monitoring will be made available in the coming months.
Appendix 1 – Receptor Locations

<table>
<thead>
<tr>
<th>No</th>
<th>Type - Location</th>
<th>No</th>
<th>Type - Location</th>
<th>No</th>
<th>Type - Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential - Harley Street</td>
<td>27</td>
<td>Residential - Great Castle Street</td>
<td>53</td>
<td>Residential - Margaret Street</td>
</tr>
<tr>
<td>2</td>
<td>Residential - Wigmore Street</td>
<td>28</td>
<td>Residential - Great Marlborough Street</td>
<td>54</td>
<td>Residential - Wigmore Street</td>
</tr>
<tr>
<td>3</td>
<td>Residential - Oxford Street</td>
<td>29</td>
<td>Residential - Mount Street</td>
<td>55</td>
<td>Residential - Great Cumberland Place</td>
</tr>
<tr>
<td>4</td>
<td>Residential - Savile Row</td>
<td>30</td>
<td>Residential - James Street</td>
<td>56</td>
<td>School - Hanover Square</td>
</tr>
<tr>
<td>5</td>
<td>Residential - Chandos Street</td>
<td>31</td>
<td>Residential - Regent Street</td>
<td>57</td>
<td>College - Mandeville Place</td>
</tr>
<tr>
<td>6</td>
<td>Residential - Portman Square</td>
<td>32</td>
<td>Residential - Vere Street</td>
<td>58</td>
<td>School - Dunraven Street</td>
</tr>
<tr>
<td>7</td>
<td>Residential - Bruton Street</td>
<td>33</td>
<td>Residential - Oxford Street</td>
<td>59</td>
<td>Nursery School - Marylebone Lane</td>
</tr>
<tr>
<td>8</td>
<td>Residential - Brook Street</td>
<td>34</td>
<td>Residential - Manchester Square</td>
<td>60</td>
<td>School - Balderton Street</td>
</tr>
<tr>
<td>9</td>
<td>Residential - Piccadilly</td>
<td>35</td>
<td>Residential - Stratford Place</td>
<td>61</td>
<td>School - Marylebone Lane</td>
</tr>
<tr>
<td>10</td>
<td>Residential - Cavendish Square</td>
<td>36</td>
<td>Residential - Grosvenor Square</td>
<td>62</td>
<td>School – Eaton Square</td>
</tr>
<tr>
<td>11</td>
<td>Residential - Park Lane</td>
<td>37</td>
<td>Residential - Duke Street</td>
<td>63</td>
<td>University - Charterhouse Street</td>
</tr>
<tr>
<td>12</td>
<td>Residential - Seymour Street</td>
<td>38</td>
<td>Residential - Conduit Street</td>
<td>64</td>
<td>School - St Vincent Street</td>
</tr>
<tr>
<td>13</td>
<td>Residential - Grosvenor Square</td>
<td>39</td>
<td>Residential - New Bond Street</td>
<td>65</td>
<td>Lecole International School, Portland Place</td>
</tr>
<tr>
<td>14</td>
<td>Residential - Berwick Street</td>
<td>40</td>
<td>Residential - Grosvenor Street</td>
<td>66</td>
<td>College - Oxford Street</td>
</tr>
<tr>
<td>15</td>
<td>Residential - George Street/Gloucester Place</td>
<td>41</td>
<td>Residential - Mount Street</td>
<td>67</td>
<td>College - Marble Arch</td>
</tr>
<tr>
<td></td>
<td>Residential - Wigmore Street</td>
<td>Residential - Piccadilly</td>
<td>Residential - George Street</td>
<td>Nursery School - George Street</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Residential - Duke Street</td>
<td>Residential - Piccadilly</td>
<td>Residential - George Street</td>
<td>Nursery School - George Street</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Residential - Cavendish Square</td>
<td>Residential - George Street</td>
<td>Hospital - Welbeck Street</td>
<td>Hospital – Harley Street</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Residential - Regent Street</td>
<td>Residential - Maddox Street</td>
<td>Residential - Park Lane</td>
<td>Residential and residential - Wigmore Street</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Residential - Wimpole Street</td>
<td>Residential - Maddox Street</td>
<td>Residential - Park Lane</td>
<td>Restaurant and residential - Wigmore Street</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Residential - Upper Grosvenor Street</td>
<td>Residential - Park Lane</td>
<td>Residential - Park Lane</td>
<td>Café and residential - Wimpmore Street</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Residential - Bryanston Street</td>
<td>Residential - Great Portland Street</td>
<td>Residential - Piccadilly</td>
<td>Café and residential - Wimpmore Street</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Residential - Connaught Place</td>
<td>Residential - Regent Street</td>
<td>Residential - Piccadilly</td>
<td>Restaurant and residential - Wimpmore Street</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Residential - Connaught Place</td>
<td>Residential - Regent Street</td>
<td>Residential - Park Lane</td>
<td>Restaurant and residential - Wimpmore Street</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Residential - Wimpole Street</td>
<td>Residential - Conduit Street</td>
<td>Residential - Piccadilly</td>
<td>Café and residential, Duke Street</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Residential - Wimpole Street</td>
<td>Residential - Portman Mews South</td>
<td>Residential - Piccadilly</td>
<td>Pub - Davies Street</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Residential - Manchester Square</td>
<td>Residential - North Audley Street</td>
<td>Residential - Piccadilly</td>
<td>Restaurant and residential, Oxford Street</td>
<td></td>
</tr>
</tbody>
</table>